Synthesis 2018; 50(11): 2191-2199
DOI: 10.1055/s-0036-1591557
paper
© Georg Thieme Verlag Stuttgart · New York

CuI/Et2NH-Catalyzed One-Pot Highly Efficient Synthesis of 1,4-Disubstituted 1,2,3-Triazoles in Green Solvent Glycerol

Shengqiang Guo
a   College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China   Email: ydzhao1549@sina.com
,
Yang Zhou
b   Institute of Chemistry Co. Ltd., Henan Academy of Sciences, Zhengzhou 450002, P. R. China
,
Bencai Dai
b   Institute of Chemistry Co. Ltd., Henan Academy of Sciences, Zhengzhou 450002, P. R. China
,
Cuimeng Huo
b   Institute of Chemistry Co. Ltd., Henan Academy of Sciences, Zhengzhou 450002, P. R. China
,
Changchun Liu
b   Institute of Chemistry Co. Ltd., Henan Academy of Sciences, Zhengzhou 450002, P. R. China
,
Yongde Zhao*
a   College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China   Email: ydzhao1549@sina.com
b   Institute of Chemistry Co. Ltd., Henan Academy of Sciences, Zhengzhou 450002, P. R. China
› Author Affiliations
This research was supported by College of Chemistry and Chemical Engineering, Henan University, and Institute of Chemistry Co. Ltd., Henan Academy of Sciences.
Further Information

Publication History

Received: 04 January 2018

Accepted after revision: 27 February 2018

Publication Date:
28 March 2018 (online)


Abstract

A concise one-pot three-component reaction of organic halides­, terminal acetylenes, and sodium azide provided an efficient route for the synthesis of 1,2,3-triazoles. A variety of 1,2,3-triazoles were prepared in good to excellent yields with green solvent glycerol. This procedure used CuI and diethylamine, which are two easily available reagents as the new catalytic system at room temperature.

Supporting Information

 
  • References


    • For selected examples:
    • 1a Horne WS. Yadav MK. Stout CD. Ghadiri MR. J. Am. Chem. Soc. 2004; 126: 15366
    • 1b Pagliai F. Pirali T. Grosso ED. Brisco RD. Tron GC. Sorba G. Genaz-zani AA. J. Med. Chem. 2006; 49: 467
    • 1c Angell YL. Burgess K. Chem. Soc. Rev. 2007; 36: 1674
    • 1d Meldal M. Tornoe CW. Chem. Rev. 2008; 108: 2952
    • 2a Bock VD. Speijer D. Hiemstra H. van Maarseveen JH. Org. Biomol. Chem. 2007; 5: 971
    • 2b Dedola S. Nepogodiev SA. Field RA. Org. Biomol. Chem. 2007; 5: 1006

      For selected examples:
    • 3a Wu P. Feldman AK. Nugent AK. Hawker CJ. Scheel A. Voit B. Pyun J. Fréchet JM. J. Sharpless KB. Fokin VV. Angew. Chem. Int. Ed. 2004; 43: 3928
    • 3b Nandivada H. Jiang XW. Lahann J. Adv. Mater. 2007; 19: 2197
    • 3c Johnson TC. Totty WG. Wills M. Org. Lett. 2012; 14: 5230

      For selected examples:
    • 4a Kolb HC. Sharpless KB. Drug. Discov. Today 2003; 8: 1128
    • 4b Sugawara A. Sunazuka T. Hirose T. Nagai K. Yamaguchi Y. Hanaki H. Sharpless KB. Omura S. Bioorg. Med. Chem. Lett. 2007; 17: 6340
    • 4c Tron GC. Pirali T. Billington RA. Canonico PL. Sorba G. Genazzani AA. Med. Res. Rev. 2008; 28: 278

      For selected examples, see ref. 1d and:
    • 5a Dai Q. Gao W. Liu D. Kapzes LM. Zhang X. J. Org. Chem. 2006; 71: 3928
    • 5b Liu YX. Yan WM. Chen YF. Petersen JL. Shi XD. Org. Lett. 2008; 10: 5389

      For selected examples:
    • 6a Meldal M. Christensen CC. Tornøe W. J. Org. Chem. 2002; 67: 3057
    • 6b Li Z. Seo TS. Ju J. Tetrahedron Lett. 2004; 45: 3143
    • 6c Zhang L. Chen X. Xue P. Sun HH. Y. Williams ID. Sharpless KB. Fokin VV. Jia G. J. Am. Chem. Soc. 2005; 127: 15998
    • 6d Golas PL. Tsarevsky NV. Sumerlin BS. Matyjaszewski K. Macromolecules. 2006; 39: 6451
    • 6e Kwok SW. Fotsing JR. Fraser RJ. Rodionov VO. Fokin VV. Org. Lett. 2010; 12: 4217

      For selected examples, see ref. 1d and:
    • 7a Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 7b Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 7c Rodionov VO. Fokin VV. Finn MG. Angew. Chem. Int. Ed. 2005; 44: 2210
    • 7d Debets MF. van Berkel SS. Dommerholt J. Dirks AJ. Rutjes FP. J. T. van Delft FL. Acc. Chem. Res. 2011; 44: 805
  • 8 Scriven EF. V. Turnbull K. Chem. Rev. 1988; 88: 297

    • For selected examples:
    • 9a Feldman AK. Colasson B. Fokin VV. Org. Lett. 2004; 6: 3897
    • 9b Baig RB. N. Varma RS. Chem. Commun. 2012; 48: 5853
    • 9c Mukherjee N. Ahammed S. Bhadra S. Ranu BC. Green Chem. 2013; 15: 389
    • 9d Wei F. Li H. Song C. Ma Y. Zhou L. Tung C. Xu Z. Org. Lett. 2015;  17: 2860

      For selected examples:
    • 10a Liu PN. Siyang HX. Zhang L. San Tse SK. Jia G. J. Org. Chem. 2012; 77: 5844
    • 10b Ali A. Correa AG. Alves D. Zukerman-Schpector J. Westermann B. Ferreira MA. B. Paixao MW. Chem. Commun. 2014; 50: 11926
    • 10c Shil AK. Kumar S. Sharma S. Chaudhary A. Das P. RSC Adv. 2015; 5: 11506
  • 11 Capello C. Fisher U. Kungerbühler K. Green Chem. 2007; 9: 927
  • 12 Radatz CS. Soares LA. Vieira ER. Alves D. Russowsky D. Schneider PH. New J. Chem. 2014; 38: 1410
  • 13 Tasca E. Sorella G. Sperni L. Strukul G. Scarso A. Green Chem. 2015; 17: 1414
  • 14 Alonso F. Moglie Y. Radivoy G. Yus M. J. Org. Chem. 2011; 76: 8394

    • For selected examples:
    • 15a DeSimone JM. Science 2002; 297: 799
    • 15b Nelson WM. Green Solvents for Chemistry: Perspectives and Practice . Oxford University Press; New York: 2003
    • 15c Clark JH. Taverner SJ. Org. Process Res. Dev. 2007; 11: 149
    • 16a Gu Y. Barrault J. Jérôme F. Adv. Synth. Catal. 2008; 350: 2007
    • 16b Gu Y. De Sousa R. Frapper G. Bachmann C. Barrault J. Jéřome F. Green Chem. 2009; 11: 1968

      For selected examples:
    • 17a Li J. Wang D. Zhang Y. Li J. Chen B. Org. Lett. 2009; 11: 3024
    • 17b Alonso F. Moglie Y. Radivoy G. Yus M. Org. Biomol. Chem. 2011; 9: 6385
    • 17c Haldón E. Nicasio MC. Perez PJ. Org. Biomol. Chem. 2015; 13: 9528